Hierarchical Kendall copulas: Properties and inference
نویسنده
چکیده
While there is substantial need for dependence models in higher dimensions, most existing models quickly become rather restrictive and barely balance parsimony and flexibility. Hierarchical constructions may improve on that by grouping variables in different levels. In this paper, the new class of hierarchical Kendall copulas is proposed and discussed. Hierarchical Kendall copulas are built up by flexible copulas specified for groups of variables, where aggregation is facilitated by the Kendall distribution function, the multivariate analog to the probability integral transform for univariate random variables. After deriving properties of the general model formulation, particular focus is given to inference techniques of hierarchical Kendall copulas with Archimedean components, for which closed-form analytical expressions can be derived. A substantive application to German stock returns finally shows that hierarchical Kendall copulas perform very well for real data, out-ofas well as in-sample.
منابع مشابه
Structure Determination and Estimation of Hierarchical Archimedean Copulas Based on Kendall Correlation Matrix
Copulas recently emerged in many data analysis and knowledge discovery tasks as a flexible tool for modeling complex multivariate distributions. The paper presents a method for estimating copulas from one of the most popular classes of copulas, namely hierarchical Archimedean copulas. The method is based on the close relationship of the copula structure and the values of Kendall’s tau computed ...
متن کاملParameter Estimation of Some Archimedean Copulas Based on Minimum Cramér-von-Mises Distance
The purpose of this paper is to introduce a new estimation method for estimating the Archimedean copula dependence parameter in the non-parametric setting. The estimation of the dependence parameter has been selected as the value that minimizes the Cramér-von-Mises distance which measures the distance between Empirical Bernstein Kendall distribution function and true Kendall distribution functi...
متن کاملProperties of Hierarchical Archimedean Copulas
In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula value, which is particularly useful for tests and constructing ...
متن کاملUnderstanding Relationships Using Copulas*
This article introduces actuaries to the concept of ‘‘copulas,’’ a tool for understanding relationships among multivariate outcomes. A copula is a function that links univariate marginals to their full multivariate distribution. Copulas were introduced in 1959 in the context of probabilistic metric spaces. The literature on the statistical properties and applications of copulas has been develop...
متن کاملActuarial Research Clearing House
This article introduces actuaries to the concept of "copulas," a tool for understanding relationships among multivariate outcomes. A copula is a function that links univariate marginals to their full multivariate distribution. Copulas were introduced in 1959 in the context of probabilistic metric spaces. Recently, there has been a rapidly developing literature on the statistical properties and ...
متن کامل